CHEMICAL QUANTITIES

Chapter 10

What is a mole?

\square A unit of measurement in chemistry
$\square 1$ mole of a substance $=6.02 \times 10^{23}$ (Avagadro's number) representative particles of a substance
\square Representative particle - atoms, molecules (nonmetals), formula units (metal-nonmetal), ions.

Particles

\square How many atoms are there in 0.360 moles of silver?
\square How many moles of magnesium is 1.25×10^{23} atoms of magnesium?
\square How many molecules are in 2.0 moles of chlorine gas?
\square How many moles are in 3.7×10^{25} formula units of KCl ?
\square How many moles are contained in 4.65×10^{24} molecules of NO_{2} ?

Volume

\square Standard temperature \& pressure (STP)

- Temperature of $0^{\circ} \mathrm{C}$
\square Pressure of 101.3 kPa or 1 atmosphere (atm)
\square At STP, 1 mole or 6.02×10^{23} rep. particles of any gas occupies a volume of 22.4 L .

Volume

\square Determine the volume, in liters, of 0.60 mol SO 2 gas at STP.
$\square 75 \mathrm{~L}$ of N_{2} gas is how many moles?
\square Determine the number of moles in 33.6 L of helium gas.
\square What is the volume of $3.20 \times 10^{-3} \mathrm{~mol} \mathrm{CO}_{2}$ gas at STP?
\square What volume, in liters, is 2.5 moles of CO_{2} at STP?

Formula Mass (Molar Mass)

\square The atomic mass (amu) of an element expressed in grams is the mass of a mole of the element.
\square The molar mass of any element contains 1 mol or 6.02×10^{23} atoms of that element.

1 mol of sulfur atoms
$32.1 \mathrm{~g}=1$ molar mass S

```
1 mol of mercury atoms
200.6 g = 1 molar mass Hg
```

1 mol of carbon atoms
$12.0 \mathrm{~g} \mathrm{C}=1$ molar mass C

1 mol of iron atoms

$$
55.8 \mathrm{~g} \mathrm{Fe}=1 \text { molar mass } \mathrm{Fe}
$$

Formula Mass (Molar Mass)

\square What is the molar mass of iron?
\square Determine the molar mass of the following compounds:
\square Water
\square Carbon dioxide
\square Sodium bicarbonate
\square Calcium fluoride
\square Phosphorus trichloride
\square Calcium sulfate

Grams

\square Must know molar mass!
\square How many grams are in 7.20 mol of $\mathrm{N}_{2} \mathrm{O}_{3}$?
\square How many moles is $\mathbf{2 8}$ grams of ammonium phosphate?
\square What is the mass of 9.45 mol of aluminum oxide?
\square How many moles of iron(III) oxide are contained in 92.2 g of pure iron(III) oxide?
\square How many grams is 0.29 mol of $\mathrm{K}_{2} \mathrm{~S}$?

The Mole Road Map

Practice

\square Calculate the molar mass of:
\square Sodium sulfate
\square Zinc nitrate
\square Convert the following:
$\square 125 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ to moles

- 1.5×10^{20} molecules of F_{2} to moles
\square A sample of NH_{3} gas occupies 75.0 liters at standard conditions. How many molecules is this?
$\square 0.987$ moles of dinitrogen trioxide to grams.
$\square 10.5 \mathrm{~L}$ of oxygen gas to grams.

Percent Composition

\square The relative amounts (\%) of each element in a compound.
$\%$ Mass of Element $\mathrm{E}=\frac{\text { mass of element } \mathrm{E}(\mathrm{g})}{\text { molar mass of compound }(\mathrm{g})} \times 100$

Percent Composition

\square Calculate the mass \% of each element in the following compounds:
$\square \mathrm{C}_{3} \mathrm{H}_{8}$
$\square \mathrm{HCN}$
\square Barium phosphate

Percent Composition

\square When a $13.60-\mathrm{g}$ sample of a compound containing only magnesium and oxygen is decomposed, 5.40 g of oxygen is obtained. What is the percent composition of each element in this compound? Think about the formula for magnesium oxide...
\square Calculate the percent nitrogen in these common fertilizers.
$\square \mathrm{NH}_{3}$
$\square \mathrm{NH}_{4} \mathrm{NO}_{3}$

Empirical Formulas

\square Give the lowest whole number ratio of the atoms (or moles of atoms) of the elements in a compound.

What is the empirical formula of a compound that

is $\mathbf{2 5 . 9} \% \mathrm{~N}$ and 74.1 \% O ?

Steps to find:

1) Convert mass \% to grams. (pretend you have 100 grams)
2) Divide by molar mass to get moles.
3) Divide answers from step 2 by smallest \# of moles.
4) Multiply to get smallest
whole \#s. (if unnecessary, iump to step 5)
5) Write the empirical formula by putting answers to 3 or 4 as subscripts.

Empirical Formula Memory Device

\square \% to Mass
\square Mass to Mole
\square Divide by small
\square Multiply till whole

Empirical Formula Practice

\square Determine the empirical formula for the following:

- 94.1% O, 5.9% H
- 79.9\% C, 20.1 \% H
$\square 67.6 \% \mathrm{Hg}, 10.8 \% \mathrm{~S}, 21.6 \% \mathrm{O}$
$\square 27.5 \%$ C, 1.15% H, 16.09% N, 55.17% O
- 17.1\% Na, 39.7\% Cr, 42.7\% O

Molecular Formulas

\square Either the same as the empirical formula, or a simple whole-number multiple of the empirical formula.

Comparison of Empirical and Molecular Formulas

Formula (name)	Classification of formula	Molar mass
CH	Empirical	13
$\mathrm{C}_{2} \mathrm{H}_{2}$ (ethyne)	Molecular	$26(2 \times 13)$
$\mathrm{C}_{6} \mathrm{H}_{6}$ (benzene)	Molecular	$78(6 \times 13)$
$\mathrm{CH}_{2} \mathrm{O}$ (methanal)	Empirical and Molecular	30
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$ (ethanoic acid)	Molecular	$60(2 \times 30)$
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (glucose)	Molecular	$180(6 \times 30)$

Calculate the molecular formula of a compound whose molar mass is $\mathbf{6 0 . 0} \mathbf{~ g} / \mathbf{m o l}$ and empirical formula is $\mathrm{CH}_{4} \mathrm{~N}$.
\square Steps to find:

1) Calculate/determine the empirical formula.
2) Determine the molar mass of the empirical formula.
3) Divide the molecular molar mass (usually given in the problem) given by the empirical molar mass.
4) Multiply the empirical
formula subscripts by the value determined in step 3.

Molecular Formula Practice

\square Answer the following:
\square What is the empirical formula of an unknown compound that has the percent composition as follows:

- 47.0 \% potassium
- 14.5 \% carbon
- 38.5 \% oxygen
\square If the true molar mass of the above compound is 166.22 $\mathrm{g} / \mathrm{mol}$, what is its molecular formula?
\square A compound with an empirical formula of $\mathrm{C}_{2} \mathrm{OH}_{4}$ has a molar mass of 88 grams per mole. What is the molecular formula of this compound?

Chapter 10 Practice

\square Convert the following:
$\square 2.0 \times 10^{23}$ molecules of oxygen gas to liters of gas at STP.
$\square 1.45$ grams of calcium nitrate to formula units.
\square Calculate the percent nitrogen in $\mathrm{NH}_{4} \mathrm{NO}_{3}$, a common fertilizer.
\square Determine the empirical formula for the following:
$\square 67.6 \% \mathrm{Hg}, 10.8 \% \mathrm{~S}, 21.6 \%$ O
\square The empirical formula of adipic acid is $\mathrm{H}_{5} \mathrm{C}_{3} \mathrm{O}_{2}$. What is the molecular formula if the molecular mass is $146 \mathrm{~g} / \mathrm{mol}$?

